Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 894
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14738, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702933

RESUMO

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.


Assuntos
Exossomos , Camundongos Endogâmicos C57BL , Microglia , Doença de Parkinson , ATPases Vacuolares Próton-Translocadoras , alfa-Sinucleína , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , alfa-Sinucleína/metabolismo , Exossomos/metabolismo , Lisossomos/metabolismo , Microglia/metabolismo , Microglia/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
2.
EMBO Rep ; 25(5): 2323-2347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565737

RESUMO

The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.


Assuntos
Trifosfato de Adenosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/metabolismo , Hidrólise
3.
Theranostics ; 14(5): 2246-2264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505620

RESUMO

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Resistência à Insulina , Lipodistrofia , Proteínas Nucleares , Transativadores , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Modelos Animais de Doenças , Glucose/metabolismo , Resistência à Insulina/genética , Lipídeos , Obesidade/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38438092

RESUMO

The excretory mechanisms of stenohaline marine osmoconforming crabs are often compared to those of the more extensively characterized euryhaline osmoregulating crabs. These comparisons may have limitations, given that unlike euryhaline brachyurans the gills of stenohaline marine osmoconformers possess ion-leaky paracellular pathways and lack the capacity to undergo ultrastructural changes that can promote ion-transport processes in dilute media. Furthermore, the antennal glands of stenohaline marine osmoconformers are poorly characterized making it difficult to determine what role urinary processes play in excretion. In the presented study, ammonia excretory processes as well as related acid-base equivalent transport rates and mechanisms were investigated in the Dungeness crab, Metacarcinus magister - an economically valuable stenohaline marine osmoconforming crab. Isolated and perfused gills were found to predominantly eliminate ammonia through a microtubule network-dependent active NH4+ transport mechanism that is likely performed by cells lining the arterial pockets of the gill lamella where critical Na+/K+-ATPase detection was observed. The V-type H+-ATPase - a vital component to transbranchial ammonia excretion mechanisms of euryhaline crabs - was not found to contribute significantly to ammonia excretion; however, this may be due to the transporter's unexpected apical localization. Although unconnected to ammonia excretion rates, a membrane-bound isoform of carbonic anhydrase was localized to the apical and basolateral membranes of lamella suited for respiration. Urine was found to contain significantly less ammonia as well as carbonate species than the hemolymph, indicating that unlike those of some euryhaline crabs the antennal glands of the Dungeness crab reabsorb these molecules rather than eliminate them for excretion.


Assuntos
Braquiúros , ATPases Vacuolares Próton-Translocadoras , Animais , Amônia/metabolismo , Brânquias/metabolismo , Transporte Biológico , Sódio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Braquiúros/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Int J Biol Sci ; 20(5): 1905-1926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481802

RESUMO

Increasing evidence suggests that autophagy plays a major role during renal fibrosis. Transcription factor EB (TFEB) is a critical regulator of autophagy- and lysosome-related gene transcription. However, the pathophysiological roles of TFEB in renal fibrosis and fine-tuned mechanisms by which TFEB regulates fibrosis remain largely unknown. Here, we found that TFEB was downregulated in unilateral ureteral obstruction (UUO)-induced human and mouse fibrotic kidneys, and kidney-specific TFEB overexpression using recombinant AAV serotype 9 (rAAV9)-TFEB in UUO mice alleviated renal fibrosis pathogenesis. Mechanically, we found that TFEB's prevention of extracellular matrix (ECM) deposition depended on autophagic flux integrity and its subsequent blockade of G2/M arrest in tubular cells, rather than the autophagosome synthesis. In addition, we together RNA-seq with CUT&Tag analysis to determine the TFEB targeted gene ATP6V0C, and revealed that TFEB was directly bound to the ATP6V0C promoter only at specific site to promote its expression through CUT&Run-qPCR and luciferase reporter assay. Interestingly, TFEB induced autophagic flux integrity, mainly dependent on scaffold protein ATP6V0C-mediated autophagosome-lysosome fusion by bridging with STX17 and VAMP8 (major SNARE complex) by co-immunoprecipitation analysis, rather than its mediated lysosomal acidification and degradation function. Moreover, we further investigated the underlying mechanism behind the low expression of TEFB in UUO-induced renal fibrosis, and clearly revealed that TFEB suppression in fibrotic kidney was due to DNMT3a-associated TFEB promoter hypermethylation by utilizing methylation specific PCR (MSP) and bisulfite-sequencing PCR (BSP), which could be effectively recovered by 5-Aza-2'-deoxycytidine (5A-za) to alleviate renal fibrosis pathogenesis. These findings reveal for the first time that impaired TFEB-mediated autophagosome-lysosome fusion disorder, tubular cell G2/M arrest and renal fibrosis appear to be sequentially linked in UUO-induced renal fibrosis and suggest that DNMT3a/TFEB/ATP6V0C may serve as potential therapeutic targets to prevent renal fibrosis.


Assuntos
Nefropatias , Obstrução Ureteral , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Camundongos , Apoptose , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Nefropatias/metabolismo , Lisossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia , Obstrução Ureteral/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/farmacologia
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473989

RESUMO

The vacuolar proton-translocating ATPase (V-ATPase) is a transmembrane multi-protein complex fundamental in maintaining a normal intracellular pH. In the tumoral contest, its role is crucial since the metabolism underlying carcinogenesis is mainly based on anaerobic glycolytic reactions. Moreover, neoplastic cells use the V-ATPase to extrude chemotherapy drugs into the extra-cellular compartment as a drug resistance mechanism. In glioblastoma (GBM), the most malignant and incurable primary brain tumor, the expression of this pump is upregulated, making it a new possible therapeutic target. In this work, the bafilomycin A1-induced inhibition of V-ATPase in patient-derived glioma stem cell (GSC) lines was evaluated together with temozolomide, the first-line therapy against GBM. In contrast with previous published data, the proposed treatment did not overcome resistance to the standard therapy. In addition, our data showed that nanomolar dosages of bafilomycin A1 led to the blockage of the autophagy process and cellular necrosis, making the drug unusable in models which are more complex. Nevertheless, the increased expression of V-ATPase following bafilomycin A1 suggests a critical role of the proton pump in GBM stem components, encouraging the search for novel strategies to limit its activity in order to circumvent resistance to conventional therapy.


Assuntos
Glioblastoma , Glioma , Macrolídeos , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Glioma/patologia , Glioblastoma/patologia , Resistência a Medicamentos , Fenótipo , Células-Tronco Neoplásicas/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338935

RESUMO

Bafilomycin A1 inhibits V-type H+ ATPases on the molecular level, which acidifies endo-lysosomes. The main objective of the study was to assess the effect of bafilomycin A1 on Ca2+ content, NAADP-induced Ca2+ release, and ATPase activity in rat hepatocytes and human colon cancer samples. Chlortetracycline (CTC) was used for a quantitative measure of stored calcium in permeabilized rat hepatocytes. ATPase activity was determined by orthophosphate content released after ATP hydrolysis in subcellular post-mitochondrial fraction obtained from rat liver as well as from patients' samples of colon mucosa and colorectal cancer samples. In rat hepatocytes, bafilomycin A1 decreased stored Ca2+ and prevented the effect of NAADP on stored Ca2+. This effect was dependent on EGTA-Ca2+ buffers in the medium. Bafilomycin A1 significantly increased the activity of Ca2+ ATPases of endoplasmic reticulum (EPR), but not plasma membrane (PM) Ca2+ ATPases in rat liver. Bafilomycin A1 also prevented the effect of NAADP on these pumps. In addition, bafilomycin A1 reduced Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in the subcellular fraction of rat liver. Concomitant administration of bafilomycin A1 and NAADP enhanced these effects. Bafilomycin A1 increased the activity of the Ca2+ ATPase of EPR in the subcellular fraction of normal human colon mucosa and also in colon cancer tissue samples. In contrast, it decreased Ca2+ ATPase PM activity in samples of normal human colon mucosa and caused no changes in colon cancer. Bafilomycin A1 decreased Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in normal colon mucosa samples and in human colon cancer samples. It can be concluded that bafilomycin A1 targets NAADP-sensitive acidic Ca2+ stores, effectively modulates ATPase activity, and assumes the link between acidic stores and EPR. Bafilomycin A1 may be useful for cancer therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , ATPases Vacuolares Próton-Translocadoras , Humanos , Ratos , Animais , Macrolídeos/farmacologia , Frações Subcelulares/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Fígado/metabolismo , Cálcio/metabolismo
8.
Microb Cell Fact ; 23(1): 4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172917

RESUMO

BACKGROUND: The supply of ATP is a limiting factor for cellular metabolism. Therefore, cell factories require a sufficient ATP supply to drive metabolism for efficient bioproduction. In the current study, a light-driven proton pump in the vacuolar membrane was constructed in yeast to reduce the ATP consumption required by V-ATPase to maintain the acidification of the vacuoles and increase the intracellular ATP supply for bioproduction. RESULTS: Delta rhodopsin (dR), a microbial light-driven proton-pumping rhodopsin from Haloterrigena turkmenica, was expressed and localized in the vacuolar membrane of Saccharomyces cerevisiae by conjugation with a vacuolar membrane-localized protein. Vacuoles with dR were isolated from S. cerevisiae, and the light-driven proton pumping activity was evaluated based on the pH change outside the vacuoles. A light-induced increase in the intracellular ATP content was observed in yeast harboring vacuoles with dR. CONCLUSIONS: Yeast harboring the light-driven proton pump in the vacuolar membrane developed in this study are a potential optoenergetic cell factory suitable for various bioproduction applications.


Assuntos
Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos , Prótons , Rodopsina/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Biochem Biophys Res Commun ; 699: 149551, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277730

RESUMO

V-ATPase is an ATP hydrolysis-driven proton pump involved in the acidification of intracellular organelles and systemic acid-base homeostasis through H+ secretion in the renal collecting ducts. V-ATPase dysfunction is associated with hereditary distal renal tubular acidosis (dRTA). ATP6V1B1 encodes the B1 subunit of V-ATPase that is integral to ATP hydrolysis and subsequent H+ transport. Patients with pathogenic ATP6V1B1 mutations often exhibit an early onset of sensorineural hearing loss. However, the mechanisms underlying this association remain unclear. We employed morpholino oligonucleotide-mediated knockdown and CRISPR/Cas9 gene editing to generate Atp6v1ba-deficient (atp6v1ba-/-) zebrafish as an ortholog model for ATP6V1B1. The atp6v1ba-/- zebrafish exhibited systemic acidosis and significantly smaller otoliths compared to wild-type siblings. Moreover, deficiency in Atp6v1ba led to degeneration of inner ear hair cells, with ultrastructural changes indicative of autophagy. Our findings indicate a critical role of ATP6V1B1 in regulating lysosomal pH and autophagy in hair cells, and the results provide insights into the pathophysiology of sensorineural hearing loss in dRTA. Furthermore, this study demonstrates that the atp6v1ba-/- zebrafish model is a valuable tool for further investigation into disease mechanisms and potential therapies for acidosis-related hearing impairment.


Assuntos
Acidose Tubular Renal , Acidose , Perda Auditiva Neurossensorial , Compostos Organometálicos , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Peixe-Zebra/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Mutação , Acidose Tubular Renal/genética , Células Ciliadas Auditivas/patologia , Concentração de Íons de Hidrogênio , Cabelo/metabolismo , Trifosfato de Adenosina
10.
Autophagy ; 20(2): 437-440, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960894

RESUMO

The acidic pH of lysosomes is critical for catabolism in eukaryotic cells and is altered in neurodegenerative disease including Alzheimer and Parkinson. Recent reports using Drosophila and mammalian cell culture systems have identified novel and, at first sight, conflicting roles for the lysosomal associated membrane proteins (LAMPs) in the regulation of the endolysosomal system.Abbreviation: AD: Alzheimer disease; LAMP: lysosomal associated membrane protein; LTR: LysoTracker; PD: Parkinson disease; TMEM175: transmembrane protein 175; V-ATPase: vacuolar-type H+-translocating ATPase.


Assuntos
Doenças Neurodegenerativas , ATPases Vacuolares Próton-Translocadoras , Animais , Doenças Neurodegenerativas/metabolismo , Autofagia , Lisossomos/metabolismo , Proteínas de Membrana Lisossomal , Adenosina Trifosfatases/metabolismo , Drosophila/metabolismo , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Mamíferos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37935274

RESUMO

This study examined the osmoregulatory responses to hypo-osmotic shock in the commercially and ecologically important crab Episesarma mederi (H. Milne Edwards, 1853). After the acclimation for one week at a salinity of 25 PSU, Adult males E. mederi were immediately exposed to salinities of 5 PSU and 25 PSU (the control group). The time course of changes in haemolymph osmolality, gill Na+/K+ ATPase (NKA) activity, oxygen uptake rates, and mRNA expression levels of ion-transport related genes, including the NKA-α subunit, V-type H+ATPase (VT) and Na+/K+/2Cl-(NKCC), were determined. The results showed that E. mederi was a strong hyperosmoregulator after exposure to 5 PSU, achieved by modulations of NKA activity in their posterior gills rather than the anterior gills. The crabs acclimated to 5 PSU increased oxygen uptake, especially during the initial exposure, reflecting increased energetic costs for osmotic stress responses. In the posterior gills, the NKA activities of the crabs acclimated to 5 PSU at 3, 72 and 168 h were significantly higher than those in the control group. Elevated NKA-α subunit expression levels were detected at 6 h and 12 h. Increased expression levels of VT and NKCC were identified at 6 h and 12 h, respectively. Our results indicate that elevated gill NKA activity at 3 h could result from enzyme activity and kinetic alterations. On the other hand, the gill NKA activity at 72 and 168 h was sustained by elevated NKA-α subunit expression. Hence, these adaptive responses in osmoregulation enable the crabs to withstand hypo-osmotic challenges and thrive in areas of fluctuating salinity in mangroves and estuaries.


Assuntos
Braquiúros , ATPases Vacuolares Próton-Translocadoras , Masculino , Animais , Osmorregulação , Pressão Osmótica , Braquiúros/genética , Braquiúros/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Salinidade , ATPases Vacuolares Próton-Translocadoras/metabolismo , Transporte de Íons , Oxigênio/metabolismo , Brânquias/metabolismo
12.
Biochim Biophys Acta Gen Subj ; 1868(1): 130497, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931722

RESUMO

BACKGROUND: In advanced and recurrent endometrial carcinoma (EC), the current state of immuno- or targeted therapy remains in the clinical research phase. Our study aimed to explore the role of the ESCRT machinery in maintaining cell membrane integrity and reversing pyroptotic cell death. METHODS: Immunohistochemistry, western blotting, and co-immunoprecipitation were performed to determine the expression and relationship between GSDMD, CHMP4B, and VPS4A. We employed techniques such as FITC Annexin V/propidium iodide staining, Ca2+ fluorescence intensity, IL-1ß enzyme-linked immunosorbent assay, and lactate dehydrogenase release assay to detect pyroptosis in endometrial cancer cells. Plasma membrane perforations and CHMP4B/VPS4A puncta were observed through electron and fluorescence confocal microscopy. RESULTS: We showed that GSDMD, CHMP4B, and VPS4A were differentially expressed in the pyroptotic EC xenograft mouse model group, as well as high, moderate, and mild expression in EC cells treated with LPS and nigericin compared to endometrial epithelial cells. Co-IP confirmed the interaction between GSDMD, CHMP4B, and VPS4A. We found that GSDMD knockdown reduced PI-positive cells, Ca2+ efflux, IL-1ß, and LDH release, while CHMP4B and VPS4A depletion enhanced these indicators in HEC1A and AN3CA cells. Electron microscopy showed membrane perforations correspondingly decreased with inactivated GSDMD and increased or decreased after CHMP4B and VPS4A depletion or overexpression in EC cells. Fluorescence confocal microscopy detected CHMP4B protein puncta associated with VPS4A at the injured plasma membrane in GSDMDNT cells. CONCLUSIONS: We preliminary evidenced that CHMP4B and VPS4A reverses GSDMD-mediated pyroptosis by facilitating cell membrane remodeling in endometrial carcinoma. Targeting CHMP4B related proteins may promote pyroptosis in endometrial tumors.


Assuntos
Neoplasias do Endométrio , ATPases Vacuolares Próton-Translocadoras , Feminino , Humanos , Camundongos , Animais , Piroptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Membrana Celular/metabolismo , Modelos Animais de Doenças , Neoplasias do Endométrio/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Gasderminas , Proteínas de Ligação a Fosfato/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(52): e2306160120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109545

RESUMO

Epulopiscium spp. are the largest known heterotrophic bacteria; a large cigar-shaped individual is a million times the volume of Escherichia coli. To better understand the metabolic potential and relationship of Epulopiscium sp. type B with its host Naso tonganus, we generated a high-quality draft genome from a population of cells taken from a single fish. We propose the name Candidatus Epulopiscium viviparus to describe populations of this best-characterized Epulopiscium species. Metabolic reconstruction reveals more than 5% of the genome codes for carbohydrate active enzymes, which likely degrade recalcitrant host-diet algal polysaccharides into substrates that may be fermented to acetate, the most abundant short-chain fatty acid in the intestinal tract. Moreover, transcriptome analyses and the concentration of sodium ions in the host intestinal tract suggest that the use of a sodium motive force (SMF) to drive ATP synthesis and flagellar rotation is integral to symbiont metabolism and cellular biology. In natural populations, genes encoding both F-type and V-type ATPases and SMF generation via oxaloacetate decarboxylation are among the most highly expressed, suggesting that ATPases synthesize ATP and balance ion concentrations across the cell membrane. High expression of these and other integral membrane proteins may allow for the growth of its extensive intracellular membrane system. Further, complementary metabolism between microbe and host is implied with the potential provision of nitrogen and B vitamins to reinforce this nutritional symbiosis. The few features shared by all bacterial behemoths include extreme polyploidy, polyphosphate synthesis, and thus far, they have all resisted cultivation in the lab.


Assuntos
Sódio , ATPases Vacuolares Próton-Translocadoras , Animais , Sódio/metabolismo , Bactérias/metabolismo , Clostridiales/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo
14.
PLoS One ; 18(11): e0292340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011122

RESUMO

BACKGROUND: Cleistanthin A (CA), extracted from Phyllanthus taxodiifolius Beille, was previously reported as a potential V-ATPase inhibitor relevant to cancer cell survival. In the present study, ECDD-S16, a derivative of cleistanthin A, was investigated and found to interfere with pyroptosis induction via V-ATPase inhibition. OBJECTIVE: This study examined the ability of ECDD-S16 to inhibit endolysosome acidification leading to the attenuation of pyroptosis in Raw264.7 macrophages activated by both surface and endosomal TLR ligands. METHODS: To elucidate the activity of ECDD-S16 on pyroptosis-induced inflammation, Raw264.7 cells were pretreated with the compound before stimulation with surface and endosomal TLR ligands. The release of lactate dehydrogenase (LDH) was determined by LDH assay. Additionally, the production of cytokines and the expression of pyroptosis markers were examined by ELISA and immunoblotting. Moreover, molecular docking was performed to demonstrate the binding of ECDD-S16 to the vacuolar (V-)ATPase. RESULTS: This study showed that ECDD-S16 could inhibit pyroptosis in Raw264.7 cells activated with surface and endosomal TLR ligands. The attenuation of pyroptosis by ECDD-S16 was due to the impairment of endosome acidification, which also led to decreased Reactive Oxygen Species (ROS) production. Furthermore, molecular docking also showed the possibility of inhibiting endosome acidification by the binding of ECDD-S16 to the vacuolar (V-)ATPase in the region of V0. CONCLUSION: Our findings indicate the potential of ECDD-S16 for inhibiting pyroptosis and prove that vacuolar H+ ATPase is essential for pyroptosis induced by TLR ligands.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Piroptose , Simulação de Acoplamento Molecular , Inflamação
15.
Commun Biol ; 6(1): 1147, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993606

RESUMO

Several chemotherapeutic drugs induce senescence in cancer cells; however, the mechanisms underlying intracellular pH dysregulation in senescent cells remain unclear. Adenosine triphosphatase H+ transporting accessory protein 2 (ATP6AP2) plays a critical role in maintaining pH homeostasis in cellular compartments. Herein, we report the regulatory role of ATP6AP2 in senescent breast cancer cells treated with doxorubicin (Doxo) and abemaciclib (Abe). A decline in ATP6AP2 triggers aberrant pH levels that impair lysosomal function and cause immune profile changes in senescent breast cancer cells. Doxo and Abe elicited a stable senescent phenotype and altered the expression of senescence-related genes. Additionally, senescent cells show altered inflammatory and immune transcriptional profiles due to reprogramming of the senescence-associated secretory phenotype. These findings elucidate ATP6AP2-mediated cellular pH regulation and suggest a potential link in immune profile alteration during therapy-induced senescence in breast cancer cells, providing insights into the mechanisms involved in the senescence response to anticancer therapy.


Assuntos
Neoplasias da Mama , ATPases Vacuolares Próton-Translocadoras , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Senescência Celular , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Receptores de Superfície Celular/metabolismo , Doxorrubicina/farmacologia , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio , Receptor de Pró-Renina
16.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
17.
Hypertens Res ; 46(11): 2527-2534, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667044

RESUMO

The (pro)renin receptor ((P)RR) is not only a member of the renin-angiotensin system (RAS) but also exerts several RAS-independent functions due to its multiple signal transductions pathways. In this mini-review, we shortly discuss the molecular functions of this receptor and its pathophysiological significance with a focus on cardiorenal diseases. Finally, we provide a short summary regarding a drug discovery and drug development program on small molecule-based renin/ prorenin receptor blockers (RERBs).


Assuntos
Receptor de Pró-Renina , ATPases Vacuolares Próton-Translocadoras , Renina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
18.
PLoS One ; 18(7): e0288622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37463144

RESUMO

Phosphatase and tensin homolog (PTEN) mutation is common in prostate cancer during progression to metastatic and castration resistant forms. We previously reported that loss of PTEN function in prostate cancer leads to increased expression and secretion of the Prorenin Receptor (PRR) and its soluble processed form, the soluble Prorenin Receptor (sPRR). PRR is an essential factor required for proper assembly and activity of the vacuolar-ATPase (V-ATPase). The V-ATPase is a rotary proton pump required for the acidification of intracellular vesicles including endosomes and lysosomes. Acidic vesicles are involved in a wide range of cancer related pathways such as receptor mediated endocytosis, autophagy, and cell signalling. Full-length PRR is cleaved at a conserved consensus motif (R-X-X-R↓) by a member of the proprotein convertase family to generate sPRR, and a smaller C-terminal fragment, designated M8.9. It is unclear which convertase processes PRR in prostate cancer cells and how processing affects V-ATPase activity. In the current study we show that PRR is predominantly cleaved by PACE4, a proprotein convertase that has been previously implicated in prostate cancer. We further demonstrate that PTEN controls PRR processing in mouse tissue and controls PACE4 expression in prostate cancer cells. Furthermore, we demonstrate that PACE4 cleavage of PRR is needed for efficient V-ATPase activity and prostate cancer cell growth. Overall, our data highlight the importance of PACE4-mediated PRR processing in normal physiology and prostate cancer tumorigenesis.


Assuntos
Neoplasias da Próstata , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Masculino , Camundongos , Pró-Proteína Convertases/metabolismo , Receptor de Pró-Renina , Neoplasias da Próstata/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
Sci Rep ; 13(1): 9260, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286698

RESUMO

ATP6AP2, also known as (pro)renin receptor, has been shown to be expressed in several tissues including pancreatic ß cells. Whereas ATP6AP2 plays an important role in regulating insulin secretion in mouse pancreatic ß cells, the expression profiles and roles of ATP6AP2 in human pancreatic endocrine cells and neuroendocrine tumor cells remain unclear. Here in this study, we investigated the expression profiles of ATP6AP2 in pancreatic endocrine cells, and found that ATP6AP2 is robustly expressed in pancreatic insulinoma cells as well as in normal ß cells. Although ATP6AP2 was also expressed in low-grade neuroendocrine tumors, it was not or faintly detected in intermediate- and high-grade neuroendocrine tumors. Knockdown experiments of the Atp6ap2 gene in rat insulinoma-derived INS-1 cells demonstrated decreased cell viability accompanied by a significant increase in apoptotic cells. Taken together, these findings suggest that ATP6AP2 plays a role in maintaining cellular homeostasis in insulinoma cells, which could lead to possible therapeutic approaches for endocrine tumors.


Assuntos
Células Secretoras de Insulina , Insulinoma , Tumores Neuroendócrinos , Neoplasias Pancreáticas , ATPases Vacuolares Próton-Translocadoras , Camundongos , Ratos , Animais , Humanos , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Insulinoma/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Sobrevivência Celular/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Receptores de Superfície Celular/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor de Pró-Renina
20.
Bioessays ; 45(7): e2200251, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183929

RESUMO

Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.


Assuntos
Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Animais , Saccharomyces cerevisiae/metabolismo , Amor , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA